Answer:
[tex]9\frac{1}{3}hours[/tex]
Step-by-step explanation:
Let third cook take x hours to prepare the same number of pies y alone
Let y be the number of pies
In 1 hour ,third cook prepare pies=[tex]\frac{y}{x}[/tex]
One experienced cook takes time to prepare enough pies =4 hours
In 1 hour , cook prepare pies=[tex]\frac{y}{4}[/tex]
Another cook takes time to prepare same number of pies =7 hours
In 1 hour , another cook prepare pies=[tex]\frac{y}{7}[/tex]
All three cooks take time to prepare the same number of pies=2 hours
In 1 hour,all three cooks prepare pies=[tex]\frac{y}{2}[/tex]
According to question
[tex]\frac{y}{4}+\frac{y}{7}+\frac{y}{x}=\frac{y}{2}[/tex]
[tex]y(\frac{1}{4}+\frac{1}{7}+\frac{1}{x})=\frac{y}{2}[/tex]
[tex]\frac{1}{4}+\frac{1}{7}+\frac{1}{x}=\frac{1}{2}[/tex]
[tex]\frac{1}{x}=\frac{1}{2}-\frac{1}{4}-\frac{1}{7}[/tex]
[tex]\frac{1}{x}=\frac{14-7-4}{28}=\frac{3}{28}[/tex]
[tex]x=\frac{28}{3}=9\frac{1}{3}[/tex] hours
Hence, the third cook takes time to prepare the same number of pies alone=[tex]9\frac{1}{3}hours[/tex]