Answer with Step-by-step explanation:
We are given that
a.[tex]f(r)=\pi r^2[/tex]
[tex]A=\pi r^2[/tex]
[tex]r^2=\frac{A}{\pi}[/tex]
[tex]g(A)=r=\sqrt{\frac{A}{\pi}}[/tex]
b.Radius=2.58 cm
Substitute the values in the formula and [tex]\pi=3.14[/tex]
[tex]f(2.58)=3.14(2.58)^2=20.9 cm^2[/tex]
Hence, the area of circle =20.9 square cm
c.Area of circle=1530 square cm
[tex]r=\sqrt{\frac{1530}{3.14}}=22.07 cm[/tex]
Hence, the radius of circle=22.07 cm
c.Area of circle of radius 15.2 cm=[tex]A_1=3.14(15.2)^2=725.47 cm^2[/tex]
Area of circle of radius 15.1 cm=[tex]A_2=3.14(15.1)^2=715.95 cm^2[/tex]
[tex]A_1-A_2=725.47-715.95=9.52 cm^2[/tex]
Hence, the area of circle whose radius is 15.2 cm is greater than the area of circle of radius 15.1 cm by 9.52 square cm .