Respuesta :

Answer:

[tex](4x+1)(x-3)=0[/tex]

Step-by-step explanation:

we have

[tex]4x^2-11x-3=0[/tex]

Solve the quadratic equation

we know that

The formula to solve a quadratic equation of the form

[tex]ax^{2} +bx+c=0[/tex]

is equal to

[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]

in this problem we have

[tex]4x^2-11x-3=0[/tex]

so

[tex]a=4\\b=-11\\c=-3[/tex]

substitute in the formula

[tex]x=\frac{-(-11)\pm\sqrt{-11^{2}-4(4)(-3)}} {2(4)}[/tex]

[tex]x=\frac{11\pm\sqrt{169}} {8}[/tex]

[tex]x=\frac{11\pm13} {8}[/tex]

[tex]x=\frac{11+13} {8}=3[/tex]

[tex]x=\frac{11-13} {8}=-\frac{1}{4}[/tex]

therefore

Rewrite the expression

[tex]4x^2-11x-3=4(x+\frac{1}{4})(x-3)[/tex]

[tex]4x^2-11x-3=(4x+1)(x-3)[/tex]

[tex](4x+1)(x-3)=0[/tex]