Consider the first order separable equation
yy′=x(1+y2)
An implicit general solution can be written as x2+ =C (NOTE your answer should be a function of y alone)
Find an explicit solution of the initial value problem y(0)=1 y= .

Respuesta :

Answer with Step-by-step explanation:

We are given that first order separable equation

[tex]yy'=x(1+y^2)[/tex]

y(0)=1

[tex]y\frac{dy}{dx}=x(1+y^2)[/tex]

[tex]\frac{y}{1+y^2}dy=xdx[/tex]

Taking integration on both sides

[tex]\int\frac{y}{1+y^2}dy=\int xdx[/tex]

Suppose [tex]1+y^2=u[/tex]

Differentiate w.r.t u

[tex]2ydy=du[/tex]

[tex]ydy=\frac{1}{2}du[/tex]

Substitute the values

[tex]\frac{1}{2}\int \frac{du}{u}=\int xdx[/tex]

[tex]\frac{1}{2}lnu+C=\frac{x^2}{2}[/tex]

By using the formula

[tex]\int x^ndx=\frac{x^{n+1}}{n+1}[/tex]+C

[tex]\int \frac{dx}{x}=ln x+C[/tex]

[tex]ln(1+y^2)+2C=x^2[/tex]

[tex]ln(1+y^2)+C'=x^2[/tex]

[tex]x^2-ln(1+y^2)=C'[/tex]

Suppose [tex]f(y)=-ln(1+y^2)[/tex]

Then, the solution

[tex]x^2+f(y)=C'[/tex]

Substitute t=0

[tex]0-ln(1+1)=C'[/tex]

[tex]C'=-ln 2[/tex]

Substitute the values

[tex]x^2=ln(1+y^2)-ln 2[/tex]

[tex]x^2=ln\frac{1+y^2}{2}[/tex]

By using identity [tex]ln x-ln y=ln\frac{x}{y}[/tex]

[tex]\frac{1+y^2}{2}=e^{x^2}[/tex]

By using identity [tex]lnx=y\implies x=e^y[/tex]

[tex]1+y^2=2e^{x^2}[/tex]

[tex]y^2=2e^{x^2}-1[/tex]

[tex]y=\sqrt{2e^{x^2}-1}[/tex]