A random sample of 15 employees was selected. The average age in the sample was 31 years with a variance of 49 years. Assuming ages are normally distributed, the 98% confidence interval for the population average age is _____. a. 26.26 to 35.74 b. 11.54 to 18.46 c. 25.62 to 36.38 d. 27.82 to 34.18

Respuesta :

Answer:

Option a : 26.26 to 35.74 .

Step-by-step explanation:

We are provided a random sample of 15 employees of which average age in the sample, xbar = 31 years and Standard Deviation, s = [tex]\sqrt{49}[/tex] = 7 years.

We know that  [tex]\frac{xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] follows [tex]t_n_-_1[/tex]

So, 98% confidence interval is given by ;

   P(-2.624 < [tex]t_1_4[/tex] < 2.624) = 0.98 {because at 14 degree of freedom t table

                                                        gives critical value of 2.624 at 1% level}

  P(-2.624 < [tex]\frac{xbar - \mu}{\frac{s}{\sqrt{n} } }[/tex] < 2.624) = 0.98

  P(-2.624*[tex]\frac{s}{\sqrt{n} }[/tex] < [tex]xbar - \mu[/tex] < 2.624*[tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.98

  P(xbar - 2.624*[tex]\frac{s}{\sqrt{n} }[/tex] < [tex]\mu[/tex] < xbar + 2.624*[tex]\frac{s}{\sqrt{n} }[/tex] ) = 0.98

98% Confidence Interval for [tex]\mu[/tex] = [xbar - 2.624*[tex]\frac{s}{\sqrt{n} }[/tex] , xbar + 2.624*[tex]\frac{s}{\sqrt{n} }[/tex] ]

                                                  = [ [tex]31 - 2.624*\frac{7}{\sqrt{15} }[/tex] , [tex]31 + 2.624*\frac{7}{\sqrt{15} }[/tex] ]

                                                  = [26.26 , 35.74]

Therefore, 98% confidence interval for the population average age is 26.26 to 35.74 .