Respuesta :
Answer:
- [tex]a^n\left(1+a\right)[/tex]
Step-by-step explanation:
Considering the expression
[tex]a^n+a^{\left(n+1\right)}[/tex]
Steps
[tex]a^n+a^{n+1}[/tex]
[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c[/tex]
[tex]a^n+a^1a^n[/tex]
[tex]\mathrm{Factor\:out\:common\:term\:}a^n[/tex]
[tex]a^n\left(1+a\right)[/tex]
Therefore, factoring [tex]a^n+a^{\left(n+1\right)}[/tex] will bring [tex]a^n\left(1+a\right)[/tex].
Keywords: factor, expression
Learn more factoring from brainly.com/question/11994028
#learnwithBrainly
Answer:
[tex]a^n(1 + a)[/tex]
Step-by-step explanation:
Step 1: Separate the powers
[tex]a^n+a^(^n^+^1^)[/tex]
[tex]a^n+a^n*a^1[/tex]
[tex]a^n(1 + a)[/tex]
Answer: [tex]a^n(1 + a)[/tex]