Respuesta :

Answer:

  • [tex]a^n\left(1+a\right)[/tex]

Step-by-step explanation:

Considering the expression

[tex]a^n+a^{\left(n+1\right)}[/tex]

Steps

[tex]a^n+a^{n+1}[/tex]

[tex]\mathrm{Apply\:exponent\:rule}:\quad \:a^{b+c}=a^ba^c[/tex]

[tex]a^n+a^1a^n[/tex]

[tex]\mathrm{Factor\:out\:common\:term\:}a^n[/tex]

[tex]a^n\left(1+a\right)[/tex]

Therefore, factoring  [tex]a^n+a^{\left(n+1\right)}[/tex] will bring [tex]a^n\left(1+a\right)[/tex].

Keywords: factor, expression

Learn more factoring from brainly.com/question/11994028

#learnwithBrainly

Answer:

[tex]a^n(1 + a)[/tex]

Step-by-step explanation:

Step 1:  Separate the powers

[tex]a^n+a^(^n^+^1^)[/tex]

[tex]a^n+a^n*a^1[/tex]

[tex]a^n(1 + a)[/tex]

Answer:  [tex]a^n(1 + a)[/tex]