The initial mass of a certain species of fish is 2 million tons. The mass of​ fish, if left​ alone, would increase at a rate proportional to the​ mass, with a proportionality constant of 4​/yr. ​However, commercial fishing removes fish mass at a constant rate of 11 million tons per year. When will all the fish be​ gone? If the fishing rate is changed so that the mass of fish remains​ constant, what should that rate​ be?

Respuesta :

Answer:

[tex]y = -\frac{7}{4} e^{4t} + \frac{15}{4}[/tex]

Step-by-step explanation:

Let  [tex]y(t)[/tex]  be the amount of Radium  at any time [tex]t[/tex] .

Since the mass of fish would increase at a rate proportional to the mass with the proportionality constant of 4/yr, we obtain that the time rate of change is  proportional to [tex]y(t)[/tex]. Therefore, in that case, the model would be an first order ODE:

                                            [tex]\dfrac{dy}{dt} = 4y[/tex]

However, commercial fishing removes fish mass at a constant rate of 11 million tons per year, which means that the equation is

                                        [tex]\dfrac{dy}{dt} = 4y - 15[/tex]

The initial amount of fish was 2 tons, which gives the initial condition

                                           [tex]y(0) = 2[/tex]

Hence, we obtain the initial value problem

                                  [tex]\dfrac{dy}{dt} = 4y-15, \quad y(0) = 2[/tex]

This is the mathematical model of this process.

Let's solve the ODE. Rearranging terms in the equation gives

                            [tex]y' = 4y - 15 \iff y' - 4y = - 15[/tex]

This is an linear ODE  of the form

                                       [tex]y' + p(t)y = q(t)[/tex]

where   [tex]p(t) =-4, q(t) = -15[/tex].

Hence,

                                      [tex]h = \int p \,d t = -4\int dt = -4t +c[/tex]

So, an integrating factor is

                                                  [tex]e^h = e^{-4t}[/tex]

and the general solution is given by

                                      [tex]y(t)=e^{-h} \left( c+ \int qe^h \, dt \right)\\ \\\phantom{y(t)} =e^{4t} ( c+ \int (-15) e^{-4t} dt )\\\\\phantom{y(t)} = e^{4t} \left( c + \frac{15}{4}e^{-4t}\right) \\\\\phantom{y(t)} = ce^{4t} + \frac{15}{4}[/tex]

Now, we need to determine [tex]c[/tex]. To do so, we use the initial condition.

Substituting [tex]0[/tex] for [tex]t[/tex]  and [tex]2[/tex] for [tex]y[/tex] gives

                        [tex]2 = y(0) = ce^0 + \frac{15}{4} \implies c = 2 - \frac{15}{4} = -\frac{7}{4}[/tex]

Hence, the particular solution of this problem is:

                                       [tex]y = -\frac{7}{4} e^{4t} + \frac{15}{4}[/tex]

  • When will all the fish be​ gone?

Let [tex]t^*[/tex] be the moment when all fish are gone. Then, since the mass of fish is denoted by [tex]y[/tex],

                                       [tex]y(t^*) = 0[/tex]

We need to solve this equation for [tex]t^*[/tex].

                        [tex]-\frac{7}{4} e^{4t} + \frac{15}{4} = 0 \implies \frac{7}{4} e^{4t} = \frac{15}{4}\\\phantom{-\frac{7}{4} e^{4t} + \frac{15}{4} = 0} \implies e^{4t} = \frac{15}{7} \\\phantom{-\frac{7}{4} e^{4t} + \frac{15}{4} = 0} \implies 4t =\ln \frac{15}{7}\\\phantom{-\frac{7}{4} e^{4t} + \frac{15}{4} = 0} \implies t =\frac{1}{4}\ln \frac{15}{7} \approx 0.191[/tex]

  • If the fishing rate is changed so that the mass of fish remains​ constant, what should that rate​ be?

Let the fishing rate be such that the mass of fish remains constant.

Then, we have

                                        [tex]y(t) = 2[/tex]

Therefore,

                                   [tex]-\frac{7}{4} e^{4t} + \frac{r}{4} = 2[/tex]

For [tex]t = 0[/tex],

                          [tex]2 = -\frac{7}{4} + \frac{r}{4} \implies \frac{15}{4} = \frac{r}{4} \implies r = 15[/tex]