1 Question. Image attached. Show your work.

Answer:
[tex]\frac{x-3}{x^2+4x+3}[/tex]
Step-by-step explanation:
[tex]\frac{x}{x^2+3x+2x+6} -\frac{2}{x^2+3x+2} \\\\\frac{x}{x(x+3)+(2(x+3)}-\frac{2}{x(x+2)+x+2}\\\\\frac{x}{(x+3)(x+2)}-\frac{2}{(x+2)(x+1)}\\\\\frac{x(x+1)-2(x+3)}{(x+3)(x+2)(x+1)}\\\\\frac{x^2+x-2x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x^2-x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x^2+2x-3x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x(x+2)-3(x+2)}{(x+3)(x+2)(x+1)}\\\\\frac{(x+2)(x-3)}{(x+3)(x+2)(x+1)}\\\\\frac{x-3}{(x+3)(x+1)}\\\\\frac{x-3}{x^2+x+3x+3}\\\\\frac{x-3}{x^2+4x+3}[/tex]
ok so
[tex]\frac{x}{x^{2}+5x+6 } -\frac{2}{x^{2}+3x+2 }=[/tex]
the answer is
[tex]\frac{x-2}{2x+4}[/tex]