Respuesta :

Answer:

[tex]\frac{x-3}{x^2+4x+3}[/tex]

Step-by-step explanation:

[tex]\frac{x}{x^2+3x+2x+6} -\frac{2}{x^2+3x+2} \\\\\frac{x}{x(x+3)+(2(x+3)}-\frac{2}{x(x+2)+x+2}\\\\\frac{x}{(x+3)(x+2)}-\frac{2}{(x+2)(x+1)}\\\\\frac{x(x+1)-2(x+3)}{(x+3)(x+2)(x+1)}\\\\\frac{x^2+x-2x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x^2-x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x^2+2x-3x-6}{(x+3)(x+2)(x+1)}\\\\\frac{x(x+2)-3(x+2)}{(x+3)(x+2)(x+1)}\\\\\frac{(x+2)(x-3)}{(x+3)(x+2)(x+1)}\\\\\frac{x-3}{(x+3)(x+1)}\\\\\frac{x-3}{x^2+x+3x+3}\\\\\frac{x-3}{x^2+4x+3}[/tex]

ok so

[tex]\frac{x}{x^{2}+5x+6 } -\frac{2}{x^{2}+3x+2 }=[/tex]

  1. x-2=        x-2
  2. x²-x²=     0
  3. 5x-3x=    2x
  4. 6-2=        4

the answer is

[tex]\frac{x-2}{2x+4}[/tex]