Consider the initial value problem
4u'' − u' + 2u = 0, u(0) = 3, u'(0) = 0.
(a) Find the solution u(t) of this problem.
(b) For t > 0, find the first time at which |u(t)| = 10. Round your answer to four decimal places.

Respuesta :

Answer with Step-by-step explanation:

We are given that initial value problem

a.[tex]4u''-u'+2u=0[/tex]

u(0)=3,u'(0)=0

Auxillary equation

[tex]4m^2-m+2=0[/tex]

[tex]m=\frac{1\pm\sqrt{(-1)^2-4(4)(2)}}{2(4)}[/tex]

By using quadratic formula:[tex]x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}[/tex]

[tex]m=\frac{1\pm\sqrt{1-32}}{8}[/tex]

[tex]m=\frac{1\pm i\sqrt{31}}{8}=\frac{1}{8}\pm i\frac{\sqrt{31}}{8}[/tex]

Therefore, the general solution of the initial value problem

[tex]u(t)=e^{\frac{t}{8}}(c_1cos\frac{\sqrt{31}}{8}t+c_2sin\frac{\sqrt{31}}{8}t)[/tex]

Substitute t=0 and u(0)=3

[tex]3=c_1[/tex]

Differentiate w.r.t t

[tex]u'(t)=\frac{1}{8}e^{\frac{t}{8}}(c_1cos\frac{\sqrt{31}}{8}t+c_2sin\frac{\sqrt{31}}{8}t)+e^{\frac{t}{8}}(-\frac{\sqrt{31}}{8}c_1sin\frac{\sqrt{31}}{8}t+\frac{\sqrt{31}}{8}c_2cos\frac{\sqrt{31}}{8}t)[/tex]

Substitute t=0 and u'(0)=0

[tex]0=\frac{1}{8}c_1+\frac{\sqrt{31}}{8}c_2[/tex]

Substitute the value of [tex]c_1[/tex]

[tex]0=\frac{1}{8}\times 3+\frac{\sqrt{31}}{8}c_2[/tex]

[tex]-\frac{3}{8}=\frac{\sqrt{31}}{8}c_2[/tex]

[tex]c_2=-\frac{3}{8}\times \frac{8}{\sqrt{31}}[/tex]

[tex]c_2=-\frac{3}{\sqrt{31}}[/tex]

Substitute the values

[tex]u(t)=e^{\frac{t}{8}}(3cos\frac{\sqrt{31}}{8}t-\frac{3}{\sqrt{31}}sin\frac{\sqrt{31}}{8}t)[/tex]

(b) For t>0 [tex]\mid u(t)\mid=10[/tex]

We cannot find the solution of  [tex]\mid u(t)\mid=10[/tex]analytically

But we can use the graph to find the approximate value of the solution.

By graph , the approximate value of t=12.2 for which  [tex]\mid u(t)\mid=10[/tex]

Ver imagen lublana