Respuesta :
Answer:
a) v₂ = (-9.04 i ^ - 8.20 j ^) 10⁶ m / s , b) K_{f} = 440.52 10⁻¹⁵ J
Explanation:
We can solve this exercise using the conservation of the moment, remember that being a vector quantity must be conserved in each axis
X axis
Initial. Before the breakup (v = 0)
p₀ₓ = 0
Final. After disintegration
[tex]p_{fx}[/tex] = m₁ v₁ + m₂ v₂
m₁ = 8.50 10⁻²⁷ kg
v₁ = 4.00 10⁶ m / s
p₀ₓ = p_{fx}
0 = m₁ v₁ + m₂ v₂ₓ
v₂ₓ = -m₁ / m₂ v₁
The total mass is M is divided into three parts m1, m2 and m3
M = m₁ + m₂ + m₃
m₂ = M - m₁ - m₃
m₂ = 1.74 10⁻²⁶ - 5.14 10⁻²⁷ - 8.50 10⁻²⁷
m₂ = 3.76 10⁻²⁷ kg
We replace
v₂ₓ = - 8.50 / 3.76 4.00 10⁶
v₂ₓ = - 9.04 10⁶ m / s
Y Axis
Initial
[tex]p_{oy}[/tex] = 0
Final
p_{fy} = m₃ v₃ + m₂ [tex]v_{2y}[/tex]
p_{oy} = p_{fy}
0 = m₃ v₃ + m₂ v_{2y}
v_{2y} = - m₃ / m₂ v₃
v_{2y} = -5.14 / 3.76 6.00 10⁶
v_{2y} = - 8.20 10⁶ m / s
a) the speed of the particle is
v₂ = (-9.04 i ^ - 8.20 j ^) 10⁶ m / s
b) the change in kinetic energy is
K₀ = 0
[tex]K_{f}[/tex] = K₁ + K₂ + K₃
K_{f} = ½ m₁ v₁² + ½ m₂ v₂² + ½ m₃ v₃²
K_{f} = ½ 8.5 10⁻²⁷ (4 10⁶)²+½ 3.76 10⁻²⁷(9.04² + 8.20²) 10¹²+½ 5.14 10⁻²⁷ (6 10⁶)²
K_{f} = 68 10⁻¹⁵ + 280 10⁻¹⁵ + 92.52 10⁻¹⁵
K_{f} = 440.52 10⁻¹⁵ J