A phone cord is 2.89 m long. The cord has a mass of 0.258 kg. A transverse wave pulse is produced by plucking one end of the tautcord. The pulse makes four trips down and back along the cord in 0.737 s. What is the tension in the cord

Respuesta :

Answer:

[tex]T =87.87\ N[/tex]

Explanation:

Given,

Length , l=2.89 m

Mass , M=0.258 Kg

Now, displacement [tex]d=4(2 \times 2.89) m[/tex]

                                    [tex]=23.12 m[/tex]

Velocity of waves

[tex]v=\sqrt{T / \mu}[/tex]

[tex]\mu=\frac{0.258}{2.89 }[/tex]

[tex]=0.0893[/tex]

Now, velocity, [tex]v=\frac{d}{t}=\frac{23.12}{0.737 s}[/tex]

[tex]=31.37 m/s[/tex]

The tension

[tex]T=v^{2} \mu=31.37 \times 31.37 \times 0.0893[/tex]

[tex]T =87.87\ N[/tex]

Tension in the chord is equal to  [tex]T =87.87\ N[/tex]