An evacuated tube uses an accelerating voltage of 39 kV to accelerate electrons to hit a copper plate and produce x rays. What would be the final speed of such an electron? Hint: Go back to Unit 1! Conservation of energy applies. I have just now given you potential (V) instead of potential energy (U). m/s

Respuesta :

Answer:

7.17  × 10⁷ volts

Explanation:

It is given that,

Voltage to accelerate electrons to hit a copper plate and produce X-rays,

[tex]V_1=39\ kV=39\times 10^3\ V\\[/tex]

Using the conservation of energy for the electrons as :

[tex]:39\times 10^3=\dfrac{1}{2}mv^2v=\sqrt{\dfrac{2V}{m}}[/tex]

m is the mass of electron

[tex]v=\sqrt{\dfrac{2\times 39\times 10^3}{9.1\times 10^{-31}}}\\\\= 2.93 \times 10^1^7m/s[/tex]

[tex]v=2.93\times 10^{17}\ m/s[/tex]

For the proton, mass,

[tex]m'=1.67\times 10^{-27}\ kg[/tex]

Now using the conservation of energy for the protons. We get :

[tex]V=E=\dfrac{1}{2}m'v^2V=\dfrac{1}{2}\times 1.67\times 10^{-27}\times (2.93\times 10^{17})^2V=7.17\times 10^7\ volts[/tex]