Answer:
The voltage across a semiconductor bar is 0.068 V.
Explanation:
Given that,
Current = 0.17 A
Electron concentration [tex]n= 2.7\times10^{18}\ cm^{-3}[/tex]
Electron mobility [tex]\mu=1000 cm^2/Vs[/tex]
Length = 0.1 mm
Area = 500 μm²
We need to calculate the resistivity
Using formula of resistivity
[tex]\sigma=n\times q\times \mu[/tex]
[tex]\rho=\dfrac{1}{\sigma}[/tex]
Put the value into the formula
[tex]\rho=\dfrac{1}{2.7\times10^{18}\times10^{6}\times1.6\times10^{-19}\times1000\times10^{-4}}[/tex]
[tex]\rho=2\ \mu \Omega m[/tex]
We need to calculate the resistance
Using formula of resistance
[tex]R=\dfrac{\rho l}{A}[/tex]
[tex]R=\dfrac{2\times10^{-6}\times0.1\times10^{-3}}{500\times(10^{-6})^2}[/tex]
[tex]R=0.4\ \Omega[/tex]
We need to calculate the voltage
Using formula of voltage
[tex]V= IR[/tex]
Put the value into the formula
[tex]V=0.17\times0.4[/tex]
[tex]V=0.068\ V[/tex]
Hence, The voltage across a semiconductor bar is 0.068 V.