What is the voltage across a semiconductor bar if the current through it is 0.17 A? The electron concentration in the bar is 2.7 E18 cm^-3 and the electron mobility is 1000 cm^2/(V*s). Ignore the hole concentration. The bar length and the area are 0.1 mm and 500 um^2. (UNIT:V) 0.7870 V

Respuesta :

Answer:

The voltage across a semiconductor bar is 0.068 V.

Explanation:

Given that,

Current = 0.17 A

Electron concentration [tex]n= 2.7\times10^{18}\ cm^{-3}[/tex]

Electron mobility [tex]\mu=1000 cm^2/Vs[/tex]

Length = 0.1 mm

Area = 500 μm²

We need to calculate the resistivity

Using formula of resistivity

[tex]\sigma=n\times q\times \mu[/tex]

[tex]\rho=\dfrac{1}{\sigma}[/tex]

Put the value into the formula

[tex]\rho=\dfrac{1}{2.7\times10^{18}\times10^{6}\times1.6\times10^{-19}\times1000\times10^{-4}}[/tex]

[tex]\rho=2\ \mu \Omega m[/tex]

We need to calculate the resistance

Using formula of resistance

[tex]R=\dfrac{\rho l}{A}[/tex]

[tex]R=\dfrac{2\times10^{-6}\times0.1\times10^{-3}}{500\times(10^{-6})^2}[/tex]

[tex]R=0.4\ \Omega[/tex]

We need to calculate the voltage

Using formula of voltage

[tex]V= IR[/tex]

Put the value into the formula

[tex]V=0.17\times0.4[/tex]

[tex]V=0.068\ V[/tex]

Hence, The voltage across a semiconductor bar is 0.068 V.