webassign If a snowball melts so that its surface area decreases at a rate of 6 cm2/min, find the rate at which the diameter decreases when the diameter is 10 cm.

Respuesta :

Answer:

The answer is [tex]\frac{3}{10\pi } cm/min[/tex]

Step-by-step explanation:

Assuming the snowball is a perfect sphere, then if A denotes the surface area and D the diameter then:

[tex]A=4\pi r^{2} = 4\pi (\frac{D}{2} )^{2} =\pi D^{2}[/tex]

Differentiating wrt r we have:

[tex]\frac{dA}{dD} =2\pi D[/tex]

We are told that [tex]\frac{dA}{dt}= -6[/tex] and we want to find [tex]\frac{dD}{dt}[/tex]

By the chain rule we have:

[tex]\frac{dA}{dD}=\frac{dA}{dt}.\frac{dt}{dD}=\frac{\frac{dA}{dt} }{\frac{dD}{dt} }[/tex]

∴[tex]2\pi D=-\frac{6}{\frac{dD}{dt} }[/tex]

∴[tex]\frac{dD}{dt}=-\frac{6}{2\pi D}[/tex]

When D=10 then

[tex]\frac{dD}{dt} =-\frac{6}{10*2\pi } =-\frac{3}{10\pi }[/tex]

The sign (-) shows that the D is decreasing.