A mass of 100 g stretches a spring 5 cm. If the mass is set in motion from its equilibrium position with a downward velocity of 70 cm/s, and if there is no damping, determine the position u of the mass at any time t. (Use g

Respuesta :

Answer:

Explanation:

Given

mass of spring [tex]m=100\ gm[/tex]

extension in spring [tex]x=5\ cm[/tex]

downward velocity [tex]v=70\ cm/s[/tex]

Position in undamped free vibration is given by

[tex]u(t)=A\cos \omega _0t+B\sin \omega _0t[/tex]

where [tex]\omega _0^2=\frac{k}{m}[/tex]

also [tex]\frac{k}{m}=\frac{g}{L}[/tex]

[tex]\omega _0^2=\frac{k}{m}=\frac{9.8}{0.05}[/tex]

[tex]\omega _0=14[/tex]

[tex]u(t)=A\cos(14t)+B\sin(14t)[/tex]

it is given

[tex]u(0)=0[/tex]

[tex]u'(0)=70\ cm/s[/tex]

substituting values we get

[tex]A=0[/tex]

[tex]u(t)=B\sin (14t)[/tex]

[tex]u'(t)=14B\cos (14t)[/tex]

[tex]70=14B[/tex]

[tex]B=\frac{10}{2}[/tex]

[tex]B=5[/tex]

[tex]u(t)=5\sin (14t)[/tex]