Answer:
Explanation:
(a)
Since the earth is assumed to be a sphere.
Volume of atmosphere = volume of (earth +atm osphere) — volume of earth
[tex]= \frac{4}{3}\pi(6400+ 50)^3 - \frac{4}{3}\pi (6400) ^3\\\\= \frac{4}{3}\pi(6192125000) km’^3\\= 2.6\times 10^{19} m^3[/tex]
Hence the volume of atmosphere is [tex]2.6\times 10^{19} m^3[/tex]
(b)
Write the ideal gas equation as foll ows:
[tex]PV = nRT\\\\n\frac{0.20atm\times 2.6\times10^{19} m^3}{0.08206L\, atm/mok\, K \times (15+273+15)K}\times \frac{1L}{10^{-3}m^3}\\\\= 2.20\times 10^{20} moles[/tex]
[tex]no.\, of\, molecules = 2.20\times 10^{20} moles \times \frac{6.022\times10^{23}\,molecules}{1mole}= 13.3\times10^{43} molecules [/tex]
Hence the required molecules is [tex]13.3\times10^{43} molecules [/tex]
(c)
Write the ideal gas equation as follows:
[tex]PV =nRT \\\\n=\frac{1.0 atm \times 0.5L }{0.08206 L\, atm/mol\,K \times (37 +273.1 5)K} = 0.0196 moles[/tex]
[tex]no.\, of\, molecules = 0.0196 moles \times\frac{6.022\times10^{23} molecules} {Imole}= 1.2\times 10^{23} molecules[/tex]
Hence the required molecules in Caesar breath is [tex]1.2\times 10^{23} molecules[/tex]
(d)
Volume fraction in Caesar last breath is as follows:
[tex]Fraction,\, X =\frac{12\times 10 molecules}{13.3\times 10^{43} \,molecules}= 9.0\times 10\, molecule/air\, molecule}[/tex]
(e)
Since the volume capacity of the human body is 500 mL.
[tex]Volume\, of\, Caesar\, nreath\, inhale\, is =\frac{ 12\times 10^{22}\, molecules}{breath}\times \frac{9.0\times10^{-23} molecule}{air\, molecule}\\\\= 1.08 molecule/breath[/tex]