Answer:
9.4
Explanation:
The equation for the reaction can be represented as:
[tex]CO_{(g)}[/tex] + [tex]2H_2O_{(g)}[/tex] ⇄ [tex]CH_3OH_{(g)}[/tex]
The ICE table can be represented as:
[tex]CO_{(g)}[/tex] + [tex]2H_2_{(g)}[/tex] ⇄ [tex]CH_3OH_{(g)}[/tex]
Initial 0.27 0.49 0.0
Change -x -2x x
Equilibrium 0.27 - x 0.49 -2x x
We can now say that the concentration of [tex]CH_3OH_{(g)}[/tex] at equilibrium is x;
Let's not forget that at equilibrium [tex]CH_3OH_{(g)}[/tex] = 0.11 M
So:
x = [[tex]CH_3OH_{(g)}[/tex]] = 0.11 M
[[tex]CO_{(g)}[/tex]] = 0.27 - x
[[tex]CO_{(g)}[/tex]] = 0.27 - 0.11
[[tex]CO_{(g)}[/tex]] = 0.16 M
[[tex]2H_2_{(g)}[/tex]] = (0.49 - 2x)
[[tex]2H_2_{(g)}[/tex]] = (0.49 - 2(0.11))
[[tex]2H_2_{(g)}[/tex]] = 0.49 - 0.22
[[tex]2H_2_{(g)}[/tex]] = 0.27 M
[tex]K_C = \frac{[CH_3OH]}{[CO][H_2]^2}[/tex]
[tex]K_C = \frac{(0.11)}{(0.16)[(0.27)^2}[/tex]
[tex]K_C = 9.4307[/tex]
[tex]K_C[/tex] = 9.4
∴ The equilibrium constant at that temperature = 9.4