Respuesta :

Answer:

The correct Answer is 0.0571

Explanation:

53% of U.S. households have a PCs.

So, P(Having personal computer) = p = 0.53

Sample size(n) = 250

np(1-p) = 250 * 0.53 * (1 - 0.53) = 62.275 > 10

So, we can just estimate binomial distribution to normal distribution

Mean of proportion(p) = 0.53

Standard error of proportion(SE) =  [tex]\sqrt{\frac{p(1-p)}{n} }[/tex] = [tex]\sqrt{\frac{0.53(1-0.53)}{250} }[/tex] = 0.0316

For x = 120, sample proportion(p) = [tex]\frac{x}{n}[/tex] = [tex]\frac{120}{250}[/tex] = 0.48

So, likelihood that fewer than 120 have a PC

= P(x < 120)

= P(  p^​  < 0.48 )

= P(z < [tex]\frac{0.48-0.53}{0.0316}[/tex]​)      (z=[tex]\frac{p^-p}{SE}[/tex]​)  

= P(z < -1.58)

= 0.0571      ( From normal table )