Check that the point (0, 1, 3) lies on the given surface. Then, viewing the surface as a level surface for a function f(x, y, z), find a vector normal to the surface at (0, 1, 3). y = 9/(2x + 3z)

Respuesta :

Answer:

Therefore (0,1,3) lies on the given surface.

Therefore a vector normal to the surface at (0,1,3) is

[tex]\hat{n}=2\hat{i}+9\hat {j}+3\hat{k}[/tex]

Step-by-step explanation:

Given equation of the surface is

[tex]y= \frac{9}{2x+3z}[/tex]

First we arrange the equation of the surface in the form of f(x,y,z) =0.

[tex]y(2x+3z)=9[/tex]

[tex]\Rightarrow y(2x+3z)-9=0[/tex]

Therefore [tex]f(x,y,z)=y(2x+3z)-9=0[/tex]

If the point (0,1,3) lies on the given surface. Then it will be satisfy the equation.

putting x=0, y= 1 and z=3

f(0,1,3) = 1(2.0+3.3)-9 = 9-9=0

Therefore (0,1,3) lies on the given surface.

In order to find the normal at any point in vector space we use the gradient operator:

[tex]\triangledown f(x,y,z)=\frac{\partial f}{\partial x}\hat{i}+\frac{\partial f}{\partial y}\hat{j}+\frac{\partial f}{\partial z}\hat{k}[/tex]

Here,    [tex]\frac{\partial }{\partial x}[y(2x+3z)] = 2y[/tex]        

[tex]\frac{\partial }{\partial y}[y(2x+3z)] = 2x+3z[/tex]

[tex]\frac{\partial }{\partial z}[y(2x+3z)] = 3y[/tex]

[tex]\triangledown f(x,y,z)=\frac{\partial f}{\partial x}\hat{i}+\frac{\partial f}{\partial y}\hat{j}+\frac{\partial f}{\partial z}\hat{k}[/tex]

                 [tex]=2y \hat{i}+(2x+3z)\hat{j}+3y\hat{k}[/tex]

The normal vector of the surface at (0,1,3) is

[tex]\triangledown f(0,1,3)=2.1 \hat{i} +(2.0+3.3)\hat{j}+3.1\hat{k}[/tex]

                [tex]=2\hat{i}+9\hat {j}+3\hat{k}[/tex]

Therefore a vector normal to the surface at (0,1,3) is

[tex]\hat{n}=2\hat{i}+9\hat {j}+3\hat{k}[/tex]