Answer:
[tex]F=3470.2778\ N[/tex]
Explanation:
Given:
mass of the car, [tex]m=1300\ kg[/tex]
parking speed of the car, [tex]u=0.62\ m.s^{-1}[/tex]
compression of spring bumpers on the walls, [tex]\delta x=0.072\ m[/tex]
Using the equation of motion:
[tex]v^2=u^2+2.a.\delta x[/tex]
where:
[tex]v=[/tex] final speed of the car [tex]=0\ m.s^{-1}[/tex]
[tex]a=[/tex] acceleration of the car while compressing the spring (will be -ve since final velocity tends to zero)
[tex]0^2=0.62^2+2\times a\times 0.072[/tex]
[tex]a=-2.6694\ m.s^{-1}[/tex] (negative sign denotes that it is reducing the speed )
Now the force:
[tex]F=m.a[/tex]
[tex]F=1300\times 2.6694[/tex]
[tex]F=3470.2778\ N[/tex]