The compressor of a large gas turbine receives air from the ambient surroundings at 95 kPa and 20 ºC with a low velocity. At the compressor discharge, air exits at 1.25 MPa and 430 ºC with a velocity of 90 m/s. The power input to the compressor is 5000 kW. Determine the mass flow rate of air through the unit

Respuesta :

Answer:

The mass flow rate is m = 12.0 kg/s

Explanation:

From the question we are given the following parameters

          inlet temperature , [tex]T_1 = 20[/tex]°C = 293 K

         inlet pressure , [tex]P_1 = 95KPa[/tex]        

          Outlet pressure [tex]P_2[/tex] [tex]= 1.25*10^3 kPa[/tex]

          Outlet temperature , [tex]T_2 = 430[/tex]°C

                                                  [tex]=703K[/tex]

          Final velocity , [tex]V_2 = 90m/s[/tex]

           Power Input , [tex]W_c =5000kW[/tex]

Considering the energy equation we have

        [tex]h_1 +\frac{V_1^2}{2} +q = h_2 +\frac{V_2^2}{2} +w[/tex]

                      q is the net heat transferred

                     w is the net workdone  

Lets assume that q = 0 and [tex]V_1 = 0[/tex] Hence in this question the specific heat capacity is constant

= >         [tex]-w =h_2 - h_1 +\frac{V_2^2}{2}[/tex]          

            [tex]=(C_P)_0 (T_2 -T_1) + \frac{V_2^2}{2}[/tex]

            [tex]= (1.004)(703-293) + \frac{90^2}{2(1000)}[/tex]

The division by 1000 is to convert the kinetic energy to KJ

Note the specific heat of air is 1.004  kJ/kg⋅K

           [tex]= 415.5 KJ/kg[/tex]

The mass flow rate is given as  [tex]m = \frac{Z}{-w}[/tex]

Where Z is The power input to the compressor which is given as  5000 kW

                        [tex]m = \frac{5000}{415.5}[/tex]

                            [tex]12kg/s[/tex]