(1 points) Find the wavelength of a proton moving at 1.00% of the speed of light. The mass of a proton is 1.67 \times 10^{-27} ~\text{kg}1.67×10 ​−27 ​​ kg.

Respuesta :

Answer:

The wavelength of the proton will be [tex]1.33\times 10^{-15}\ m[/tex]

Explanation:

Given the speed of the proton is [tex]1.00 \%[/tex] of speed of light.

And the mass of the proton is [tex]1.67 \times 10^{-27}\ kg[/tex]..

We need to find the wavelength of moving proton.

As we know the speed of the light [tex]c=2.998\times 10^8\ m/s[/tex]

So, speed of the proton will be

[tex]1.00 \%(c)=\frac{1}{100}\times (c)=0.01\times 2.98\times 10^8\ m/s[/tex]

Now, we will use De Broglie's Equation to find out wavelength..

[tex]\lambda =\frac{h}{mv}[/tex]

Where

[tex]\lambda[/tex] is the wavelength

[tex]h[/tex] is the Planck's constant [tex]6.626\times 10^{-34}\ m^2\ kg / s[/tex]

[tex]m[/tex] is the mass in kg

[tex]v[/tex] is the speed in m/s

[tex]\lambda=\frac{6.626\times 10^{-34}}{1.67 \times 10^{-27}\times 0.01\times 2.98\times 10^8}\\ \\\lambda=\frac{6.626}{1.67\times 0.01\times 2.98}\times 10^{-15}\\ \\\lambda=133.14\times 10^{-15}\ m\\\lambda=1.33\times 10^{-15}\ m[/tex]

So, the wavelength of the proton will be [tex]1.33\times 10^{-15}\ m[/tex]