n electric turntable 0.750 m in diameter is rotating about a fixed axis with an initial angular velocity of 0.250 rev/s and a constant angular acceleration of 0.900 rev/s2. (a) Compute the angular velocity of the turntable after 0.200 s. (b) Through how many revolutions has the turntable spun in this time interval

Respuesta :

Answer:

a) [tex]\omega_f=2.7018\ rad.s^{-1}[/tex]

b) [tex]n=0.068\ rev[/tex]

Explanation:

Given:

diameter of the table, [tex]d=0.75\ m[/tex]

initial angular velocity of the table, [tex]\omega_i=0.25\ rev.s^{-1}=0.5\pi\ rad.s^{-1}[/tex]

angular acceleration of the table, [tex]\alpha=0.9\ rev.s^{-2}=0.9\times2\pi=1.8\pi\ rad.s^{-2}[/tex]

a)

time of observation, [tex]t=0.2\ s[/tex]

Now the angular velocity after the given time:

using equation of motion

[tex]\omega_f=\omega_i+\alpha.t[/tex]

where:

[tex]\omega_f=[/tex] final angular velocity

[tex]\omega_f=0.5\pi\times +1.8\pi\times 0.2[/tex]

[tex]\omega_f=2.7018\ rad.s^{-1}[/tex]

b)

No. of revolutions made in the given time:

[tex]n=N_i.t+\frac{1}{2}\times \alpha.t^2[/tex]

where:

[tex]N_i=[/tex] initial revolution speed

[tex]n=0.25\times0.2+\frac{1}{2}\times 0.9\times 0.2^2[/tex]

[tex]n=0.068\ rev[/tex]

Lanuel

a. The angular velocity of the turntable after 0.200 seconds is 0.43 rev/s.

b. The number of revolutions the turntable spun in this time interval is 0.068 revs.

Given the following data:

  • Diameter of turntable = 0.750 m
  • Initial angular velocity = 0.250 rev/s
  • Angular acceleration = 0.900 [tex]rev/s^2[/tex]
  • Time = 0.2 seconds

a. To compute the angular velocity of the turntable after 0.200 seconds, we would use the first equation of kinematics:

[tex]w_f = w_o + at[/tex]

Where:

  • [tex]w_f[/tex] is the final angular velocity.
  • [tex]w_o[/tex] is the initial angular velocity.
  • a is the angular acceleration.
  • t is the time.

Substituting the given parameters into the formula, we have;

[tex]w_f = 0.250 + 0.900(0.200)\\\\w_f = 0.250 + 0.18[/tex]

Final angular velocity = 0.43 rev/s

b. To find how many revolutions the turntable spun in this time interval, we would use the second equation of kinematics:

[tex]X = w_ot + \frac{1}{2} at^2\\\\X = 0.250(0.2) + \frac{1}{2} (0.9)(0.2)^2\\\\X = 0.05 + 0.018[/tex]

X = 0.068 revs.

Read more; https://brainly.com/question/8848261