Respuesta :

Answer: [tex]log_5(25x^6\sqrt[3]{ x^2+6})[/tex]

Step-by-step explanation:

Given the following expression:

[tex]2log_5(5x^3)+\frac{|}{3}log_5(x^2+6)[/tex]

You need to remember the following properties for Logarithms:

[tex]1.\ log(a)+log(b)=log(ab)\\\\2.\ log(a)-log(b)=log(\frac{a}{b})\\\\3.\ log(a)^n=nlog(a)[/tex]

And the following property for Radicals:

[tex]a^{\frac{1}{n}}=\sqrt[n]{a}[/tex]

According to the Power of a power property:

[tex](a^m)^n=a^{mn}[/tex]

Then, you can follow these steps:

Step 1: Apply the third property for logarithms shown above:

[tex]=log_5(5x^3)^2+log_5(x^2+6)^{\frac{1}{3}}[/tex]

Step 2: Apply the Power of a power property:

[tex]=log_5(25x^6)+log_5(x^2+6)^{\frac{1}{3}}[/tex]

 Step 3: Using the property for Radicals shown before:

[tex]=log_5(25x^6)+log_5(\sqrt[3]{ x^2+6})[/tex]

Step 4: Now you must apply the first property for logarithms:

[tex]=log_5(25x^6\sqrt[3]{ x^2+6})[/tex]

B

Step-by-step explanation: