Answer:
7.6427m/s
Explanation:
Given:[tex]v_a=4.7m/s, \theta_a=33.0\textdegree and \ v_b=4.5m/s[/tex]
#Applying the conservation of momentum along the x-axis:[tex]mv_i=mv_acos\theta_a+mv_bcos\theta_b[/tex]
#And along y-axis:
[tex]0=-sin\theta_a+mv_bsin\theta_b[/tex]
#Solving for [tex]\theta_b[/tex]:
[tex]sin\rheta_b=\frac{v_a}{v_b}sin\theta_a=4.7/4.5\times sin33.0\textdegree\\=0.5688\\\therefore \theta_b=34.67\textdegree[/tex]
#By substitution in the x-axis equation:
[tex]v_i=4.7cos 33.0\textdegree +4.5cos 34.67\textdegree\\=7.6427m/s[/tex]
Hence the original speed of the ball before impact is 7.6427m/s