Answer : The value of [tex]K[/tex] for this reaction is, [tex]2.6\times 10^{15}[/tex]
Explanation :
The given chemical reaction is:
[tex]CH_3OH(g)+CO(g)\rightarrow HCH_3CO_2(g)[/tex]
Now we have to calculate value of [tex](\Delta G^o)[/tex].
[tex]\Delta G^o=G_f_{product}-G_f_{reactant}[/tex]
[tex]\Delta G^o=[n_{HCH_3CO_2(g)}\times \Delta G^0_{(HCH_3CO_2(g))}]-[n_{CH_3OH(g)}\times \Delta G^0_{(CH_3OH(g))}+n_{CO(g)}\times \Delta G^0_{(CO(g))}][/tex]
where,
[tex]\Delta G^o[/tex] = Gibbs free energy of reaction = ?
n = number of moles
[tex]\Delta G^0_{(HCH_3CO_2(g))}[/tex] = -389.8 kJ/mol
[tex]\Delta G^0_{(CH_3OH(g))}[/tex] = -161.96 kJ/mol
[tex]\Delta G^0_{(CO(g))}[/tex] = -137.2 kJ/mol
Now put all the given values in this expression, we get:
[tex]\Delta G^o=[1mole\times (-389.8kJ/mol)]-[1mole\times (-163.2kJ/mol)+1mole\times (-137.2kJ/mol)][/tex]
[tex]\Delta G^o=-89.4kJ/mol[/tex]
The relation between the equilibrium constant and standard Gibbs, free energy is:
[tex]\Delta G^o=-RT\times \ln K[/tex]
where,
[tex]\Delta G^o[/tex] = standard Gibbs, free energy = -89.4 kJ/mol = -89400 J/mol
R = gas constant = 8.314 J/L.atm
T = temperature = [tex]30.0^oC=273+30.0=303K[/tex]
[tex]K[/tex] = equilibrium constant = ?
Now put all the given values in this expression, we get:
[tex]-89400J/mol=-(8.314J/L.atm)\times (303K)\times \ln K[/tex]
[tex]K=2.6\times 10^{15}[/tex]
Thus, the value of [tex]K[/tex] for this reaction is, [tex]2.6\times 10^{15}[/tex]