Respuesta :

The equivalent expressions are:

Option B   [tex]7^{2x}[/tex]

Option D  [tex]7^x \times 7^x[/tex]

Option E   [tex](7 \times 7)^x[/tex]

Solution:

Given expression is:

[tex]49^x[/tex]

We have to find the equivalent expressions

Option A

[tex]7 \times 7^x[/tex]

Use the law of exponent

[tex]a^m \times a^n = a^{ m + n}[/tex]

Therefore,

[tex]7 \times 7^x = 7^{ 1 + x}[/tex]

Thus, option A is not equivalent to given expression

Option B

[tex]a^{mn} = (a^m)^n[/tex]

[tex]7^{2x} =( 7^2)^x = 49^x[/tex]

Thus option B is equivalent to given expression

Option C

Use the law of exponent

[tex]a^m \times a^n = a^{ m + n}[/tex]

[tex]7^2 \times 7^x = 7^{ 2 + x} = 49 \times 7^x[/tex]

Thus, option C is not equivalent to given expression

Option D

[tex]7^x \times 7^x = 7^{ x + x } = 7^{2x}[/tex]

[tex]a^{mn} = (a^m)^n[/tex]

Therefore,

[tex]7^{2x} = (7^2)^x = 49^x[/tex]

Thus option D is equivalent to given expression

Option E

[tex](7 \times 7 )^x = 49^x[/tex]

Thus option E is equivalent to given expression

Option F

[tex]7 \times 7^{2x} = 7^{1 + 2x}[/tex]

Thus, option F is not equivalent to given expression