Respuesta :

Answer:

a) The minimum value of modulus of n is

[tex] \sqrt{10} [/tex]

b) An example of complex number n is

[tex]3 + i[/tex]

Step-by-step explanation:

The given complex number is

[tex]m = 2 + 6i[/tex]

and the given inequality is

[tex] |m + n| = 3 \sqrt{10} [/tex]

By the triangle inequality property:

[tex] |m + n| \geqslant |m| + |n| [/tex]

This implies that:

[tex] |m| + |n| \geqslant 3 \sqrt{10} [/tex]

[tex] |2 +6i| + |n| \geqslant 3 \sqrt{10} [/tex]

[tex] \sqrt{ {2}^{2} + {6}^{2} } + |n| \geqslant 3 \sqrt{10}[/tex]

[tex] \sqrt{ 4 +36 } + |n| \geqslant 3 \sqrt{10}[/tex]

[tex] \sqrt{ 40 } + |n| \geqslant 3 \sqrt{10}[/tex]

[tex]2\sqrt{10 } + |n| \geqslant 3 \sqrt{10}[/tex]

[tex]|n| \geqslant 3 \sqrt{10} - 2 \sqrt{10} [/tex]

[tex] |n| \geqslant \sqrt{10}[/tex]

The minimum value of the modulus of n is √10

b) Let n=a+bi

[tex] |n| \geqslant \sqrt{10} \\ \implies |a + bi| = \sqrt{10} [/tex]

[tex] \sqrt{ {a}^{2} + {b}^{2} } = \sqrt{10} [/tex]

[tex] {a}^{2} + {b}^{2} = 10[/tex]

[tex] {a}^{2} = 10 - {b}^{2} [/tex]

[tex] {a} = \pm \sqrt{10 - {b}^{2} } [/tex]

when b=1,

[tex]{a} = \pm \sqrt{10 - {1}^{2} } \\ {a} = \pm \sqrt{9} \\ {a} = \pm 3 \\ a = - 3 \: or \: a = 3[/tex]

Therefore one example of complex number n is:

[tex]n = 3 + i[/tex]