Given are five observations collected in a regression study on two variables.xi 2 6 9 13 20
yi 7 18 9 26 23a. Develop a scatter diagram for these data.b. Develop the estimated regression equation for these data.

Respuesta :

Answer:

Step-by-step explanation:

Hello!

Given the data sets for the variables:

Yi: 7; 18; 9; 26; 23

Xi: 2; 6; 9; 13; 20

You have to estimate the regression equation: ^Y= a + bXi

For this you need the auxiliary calculations:

∑X= 50

∑X²= 690

∑Y= 83

∑Y²= 1659

∑XY= 1001

[tex]b= \frac{sumXY-\frac{(sumX)(sumY)}{n} }{sumX^2-\frac{(sumX)^2}{n} }[/tex]

[tex]b= \frac{1001-\frac{50*83}{5} }{690-\frac{50^2}{5} } = 0.9[/tex]

X[bar]= ∑X/n= 50/5= 10

Y[bar]= ∑Y/n= 83/5= 16.6

a= Y[bar]-bX[bar]= 16.6-(0.9*10)

a= 7.6

The estimated regression equation is ^Y= 7.6 + 0.9Xi

I hope it helps!

The estimated regression equation of the observations is [tex]\mathbf{\^y = 0.9x + 7.5}[/tex]

The points are given as:

Xi: 2; 6; 9; 13; 20

Yi: 7; 18; 9; 26; 23

From the table of values, we have:

[tex]\mathbf{\sum x = 2 + 6 + 9 + 13 + 20 = 50}[/tex]

[tex]\mathbf{\sum y = 7 + 18 + 9 + 26 + 23 = 83}[/tex]

Also, we have:

[tex]\mathbf{\sum xy = 2 \times 7 + 6 \times 18+ 9 \times 9+ 13\times 26 + 20\times 23 = 1001}[/tex]

[tex]\mathbf{\sum x^2 = 2^2 + 6^2 + 9^2 + 13^2 + 20^2 = 690}[/tex]

[tex]\mathbf{\sum y^2 = 7^2 + 18^2 + 9^2 + 26^2 + 23^2 = 1659}[/tex]

The slope (b) is calculated as:

[tex]\mathbf{b = \frac{\sum xy - \frac{\sum x \times \sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}n}}[/tex]

So, we have:

[tex]\mathbf{b = \frac{1001 - \frac{50\times 83}{5}}{690 - \frac{50^2}5}}[/tex]

[tex]\mathbf{b = \frac{1001 - 830}{690 - 500}}[/tex]

[tex]\mathbf{b = 0.9}[/tex]

The y-intercept (a) is calculated as:

[tex]\mathbf{a = \bar y -b\bar x}[/tex]

Where:

[tex]\mathbf{\bar y = \frac{\sum y}n = \frac{83}{5} = 16.6}[/tex]

[tex]\mathbf{\bar x = \frac{\sum x}n = \frac{50}{5} = 10}[/tex]

So, we have:

[tex]\mathbf{a = 16.5 - 0.9 \times 10}[/tex]

[tex]\mathbf{a = 7.5}[/tex]

The regression equation is represented as:

[tex]\mathbf{\^y = bx + a}[/tex]

So, we have:

[tex]\mathbf{\^y = 0.9x + 7.5}[/tex]

Read more about regression equations at:

https://brainly.com/question/7656407