Respuesta :

Answer:

Polynomial

[tex]x^{2}+3x^{5}-6x+12x^{3}[/tex]  

[tex]x^{4}+3x^{3}-5x^{2}-7x+20[/tex]  

[tex]x^{3}-2x^{2}+x-12[/tex]

Not a polynomial

[tex]\frac{5}{x^{3}}-\frac{1}{x^{2}}+\frac{8}{x}}-40[/tex]

[tex]x^{-3}-x^{-2}-6x^{-1}+8[/tex]

[tex]4\sqrt[3]{x}-\sqrt{x}-20[/tex]

Step-by-step explanation:

A polynomial is an algebraic expression that has multiple terms made up of numbers and variables

A Polynomial has positive integer exponents and the operations in it are addition, subtraction, and multiplication  only

∵ The expression  [tex]\frac{5}{x^{3}}-\frac{1}{x^{2}}+\frac{8}{x}}-40[/tex] has division operation

∴  [tex]\frac{5}{x^{3}}-\frac{1}{x^{2}}+\frac{8}{x}}-40[/tex]  ⇒ Not a polynomial

∵ The expression [tex]x^{2}+3x^{5}-6x+12x^{3}[/tex] has positive integer

   exponents and the operations in it are addition, subtraction

∴  [tex]x^{2}+3x^{5}-6x+12x^{3}[/tex] ⇒ Polynomial

∵ The expression  [tex]x^{4}+3x^{3}-5x^{2}-7x+20[/tex] has positive integer

   exponents and the operations in it are addition, subtraction

∴  [tex]x^{4}+3x^{3}-5x^{2}-7x+20[/tex] ⇒ Polynomial

∵ The expression  [tex]x^{-3}-x^{-2}-6x^{-1}+8[/tex] has negative integer

   exponents

∴  [tex]x^{-3}-x^{-2}-6x^{-1}+8[/tex] ⇒ Not a polynomial

∵ The expression [tex]4\sqrt[3]{x}-\sqrt{x}-20[/tex] has non integer exponents

  ([tex]\sqrt[3]{x}=x^{\frac{1}{3}}[/tex] and [tex]\sqrt{x}=x^{\frac{1}{2}}[/tex])

∴  [tex]4\sqrt[3]{x}-\sqrt{x}-20[/tex] ⇒ Not a polynomial

∵ The expression  [tex]x^{3}-2x^{2}+x-12[/tex]  has positive integer

   exponents and the operations in it are addition, subtraction

∴  [tex]x^{3}-2x^{2}+x-12[/tex] ⇒ Polynomial