Answer:
Given n = 12
mean = summation(xi)/n = 2.08167
standard deviation = vsummation(xi - u)^2 / (n-1)
= 0.15637
a ) 95% CI = ( sqrt((n-1)s^2 / X^2a) , sqrt((n-1)s^2 / X^21-a) )
= ( sqrt(11*0.15637^2/21.92) , sqrt(11*0.15637^2/3.816) )
= ( 0.11077 , 0.26549 )
b ) We are 95% confident that the true standard deviations lie in the above given interval
Source : Chi square distribution table with df = 11 and alpha = 0.025 and 0.975
Explanation: