xmzliax
contestada

Keri is simplifying 5·10^−3.
1. Which could be the first step to use when simplifying the expression?
A) 5 · 10^−3 = 5(10)^1/3
B) 5 · 10^-3 = 1/50^3
C) 5 · 10^−3 = 1/50^1/3
D) 5 · 10^−3 = 5(1/10^3)



2. Which is equivalent to
8/10^2?
A) 800
B) 1/80
C) 80
D) 100/8

Keri is simplifying 5103 1 Which could be the first step to use when simplifying the expression A 5 103 51013 B 5 103 1503 C 5 103 15013 D 5 103 51103 2 Which i class=

Respuesta :

frika

Answer:

1. D

2. A

Step-by-step explanation:

Q1. Kerry is simplifying [tex]5\cdot 10^{-3}[/tex]

By the definition of negative powers,

[tex]a^{-n}=\dfrac{1}{a^n}[/tex]

Hence,

[tex]10^{-3}=\dfrac{1}{10^3}[/tex]

So, the first step in simplifying the expression is

[tex]5\cdot 10^{-3}=5\cdot \dfrac{1}{10^3}[/tex]

Q2. Given the expression

[tex]\dfrac{8}{10^{-2}}[/tex]

First, use the definition of negative powers:

[tex]10^{-2}=\dfrac{1}{10^2}[/tex]

Thus,

[tex]\dfrac{8}{10^-2}=\dfrac{8}{\frac{1}{10^2}}=8\cdot 10^2=8\cdot 100=800[/tex]

Answer:

d then a

Step-by-step explanation: