Answer:
α [tex]= -2.303 \times 10^-^9rad/s^2[/tex]
b)t = 2619.8 years
c) T(i) = 0.0208536s
Explanation:
Given that ,
The period of pulsar T = 0.033 s
The period increase at a rate of [tex]\frac{dT}{dt}[/tex] = 1.26×10⁻⁵s/y
a) Pulsar angular speed is
ω = θ / T = 2π / T
θ = one revolution of pulsar
T = period of pulsar
Pulsar angular acceleration is given by
[tex]\alpha = \frac{dw}{dt}[/tex]
[tex]\alpha = -\frac{2\pi }{ T^2}\frac{dT}{dt}[/tex]
[tex]\alpha = -\frac{2\pi }{0.033^2} \frac{1.26 \times 10^-^5}{60\times60\times24\times365.25}[/tex]
[tex]= -2.303 \times 10^-^9rad/s^2[/tex]
b) ω₀ = θ / T
0 = 190.4 - 2.303 × 10⁻⁹
[tex]t = \frac{190.4 }{2.303 \times10^-^9} \\= 8.27 \times10^1^0s \\= 2619.8y[/tex]
c) 2018 - 1054
= 964years
The pulsar is originated in a supernova explosion 964 years ago.
then the initial period of pulsar
[tex]T_i = T - 964 \times \frac{dT}{dt} = 0.033 - 964 \times 1.26 \times 10^-^5 \\= 0.0208536s[/tex]
T(i) = 0.0208536s