The heat of vaporization ΔΗν of tetrahydrofuran (C4H80) is 32.0 kJ/mol. Calculate the change in entropy AS when 8.2 g of tetrahydrofuran boils at 66.0 °C Be sure your answer contains a unit symbol and the correct number of significant digits.

Respuesta :

Answer: The entropy change of the tetrahydrofuran is 70.8 J/K

Explanation:

To calculate the number of moles, we use the equation:

[tex]\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}[/tex]

Given mass of tetrahydrofuran = 8.2 g

Molar mass of tetrahydrofuran = 72 g/mol

Putting values in above equation, we get:

[tex]\text{Moles of tetrahydrofuran}=\frac{8.2g}{72g/mol}=0.114mol[/tex]

To calculate the entropy change for different phase at same temperature, we use the equation:

[tex]\Delta S=n\times \frac{\Delta H_{vap}}{T}[/tex]

where,  

[tex]\Delta S[/tex] = Entropy change  = ?

n = moles of tetrahydrofuran = 0.114 moles

[tex]\Delta H_{vap}[/tex] = enthalpy of vaporization = 32.0 kJ/mol = 32000 J/mol   (Conversion factor:  1 kJ = 1000 J)

T = temperature of the system = [tex]66.0^oC=[66+273]K=339K[/tex]

Putting values in above equation, we get:

[tex]\Delta S=\frac{0.114mol\times 32000J/mol}{339K}\\\\\Delta S=10.8J/K[/tex]

Hence, the entropy change of the tetrahydrofuran is 70.8 J/K