Respuesta :

Answer:

The function shown by the graph is  [tex]f(x)=1+\frac{1}{2}\sqrt[3]{x-2}[/tex] ⇒ 1st answer

Step-by-step explanation:

To find the function chose two points from the graph and substitute their x-coordinates in each function, the right function we give you the corresponding y-coordinates

From the figure:

∵ The graph passes through points (2 , 1) and (3 , 1.5)

∵ [tex]f(x)=1+\frac{1}{2}\sqrt[3]{x-2}[/tex]

∵ x = 2

∴ [tex]f(2)=1+\frac{1}{2}\sqrt[3]{2-2}[/tex]

∴ [tex]f(2)=1+\frac{1}{2}\sqrt[3]{0}[/tex]

∴ [tex]f(2)=1+0[/tex]

∴ f(2) = 1 ⇒ same value of y-coordinate

∵ x = 3

∴ [tex]f(3)=1+\frac{1}{2}\sqrt[3]{3-2}[/tex]

∴ [tex]f(3)=1+\frac{1}{2}\sqrt[3]{1}[/tex]

∴ [tex]f(3)=1+\frac{1}{2}[/tex]

∴ f(3) = 1.5 ⇒ same value of y-coordinate

The function shown by the graph is  [tex]f(x)=1+\frac{1}{2}\sqrt[3]{x-2}[/tex]