Answer:
54.0m
Explanation:
#First we solve for
[tex]R=p(L/A)\\\\L=RA/p[/tex]
let's denote the initial and final length of the rope as [tex]L_o, L_f[/tex] respectively and given as:
[tex]L_o=\frac{R_oA}{p}, \ \ \ \ L_f=\frac{R_fA}{p}\ \ \ \ \ .....eqtn1\\[/tex]
[tex]R_o[/tex] is the initial resistance and Rf the final of the wire.
[tex]\frac{L_f}{L_o}=\frac{R_fA/P}{R_oA/P}=R_f/R_o\\\\\\or \ L_f=(R_f/R_o)L_o\ \ \ \ \ \ ...eqtn2[/tex]
From [tex]R=V/I,[/tex] the initial resistance [tex]R_o, \ and\ R_f[/tex] of the spooled wire are:
[tex]R_o=V/I_o,\ \ \ \ \ \ R_f=V/I_f \ \ \ \ \ \ \....eqtn3\\[/tex]
#Substituting eqtn 3 in 2, we get
[tex]L_f=(V/I_f)/(V/I_o)L_o\\\\=\frac{2.7A}{3.5A}\times 70m\\\\=54m[/tex]
#the length of wire remaining on the spool is 54.0m