For the following telescoping series, find a formula for the nth term of the sequence of partial sums
S
n
. Then evaluate
lim
n

[infinity]
S
n
to obtain the value of the series or state that the series diverges.


[infinity]
k
=
1
=
10
(
5
k

1
)
(
5
k
+
4
)

Respuesta :

I'm guessing the sum is supposed to be

[tex]\displaystyle\sum_{k=1}^\infty\frac{10}{(5k-1)(5k+4)}[/tex]

Split the summand into partial fractions:

[tex]\dfrac1{(5k-1)(5k+4)}=\dfrac a{5k-1}+\dfrac b{5k+4}[/tex]

[tex]1=a(5k+4)+b(5k-1)[/tex]

If [tex]k=-\frac45[/tex], then

[tex]1=b(-4-1)\implies b=-\frac15[/tex]

If [tex]k=\frac15[/tex], then

[tex]1=a(1+4)\implies a=\frac15[/tex]

This means

[tex]\dfrac{10}{(5k-1)(5k+4)}=\dfrac2{5k-1}-\dfrac2{5k+4}[/tex]

Consider the [tex]n[/tex]th partial sum of the series:

[tex]S_n=2\left(\dfrac14-\dfrac19\right)+2\left(\dfrac19-\dfrac1{14}\right)+2\left(\dfrac1{14}-\dfrac1{19}\right)+\cdots+2\left(\dfrac1{5n-1}-\dfrac1{5n+4}\right)[/tex]

The sum telescopes so that

[tex]S_n=\dfrac2{14}-\dfrac2{5n+4}[/tex]

and as [tex]n\to\infty[/tex], the second term vanishes and leaves us with

[tex]\displaystyle\sum_{k=1}^\infty\frac{10}{(5k-1)(5k+4)}=\lim_{n\to\infty}S_n=\frac17[/tex]