A 40 kg girl and an 8.4 kg sled are on the frictionless ice of a frozen lake, 15 m apart but connected by a rope of negligible mass. The girl exerts a horizontal 5.2 N force on the rope. What are the acceleration magnitudes of a (a) the sled and (b) the girl? (c) How far from the girl's initial position do they meet?

Respuesta :

Answer:

a) [tex]a_{sled} = 0.619\,\frac{m}{s^{2}}[/tex], b) [tex]a_{girl} = 0.13\,\frac{m}{s^{2}}[/tex], c) [tex]x_{girl} = 2.604\,m[/tex]

Explanation:

a) The acceleration magnitude for the sled is:

[tex]a_{sled} = \frac{5.2\,N}{8.4\,kg }[/tex]

[tex]a_{sled} = 0.619\,\frac{m}{s^{2}}[/tex]

b) The acceleration magnitude for the girl is:

[tex]a_{girl} = \frac{5.2\,N}{40\,kg }[/tex]

[tex]a_{girl} = 0.13\,\frac{m}{s^{2}}[/tex]

c) The position equations for the girl and sled are, respectively:

[tex]x_{girl} = 0\,m + \frac{1}{2}\cdot (0.13\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]

[tex]x_{sled} = 15\,m-\frac{1}{2}\cdot (0.619\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]

It is needed to know in which time the girl and sled meet each other. That is:

[tex]0\,m + \frac{1}{2}\cdot (0.13\,\frac{m}{s^{2}} )\cdot t^{2} =15\,m-\frac{1}{2}\cdot (0.619\,\frac{m}{s^{2}} )\cdot t^{2}[/tex]

[tex]15\,m - \frac{1}{2}\cdot (0.749\,\frac{m}{s^{2}} )\cdot t^{2} = 0[/tex]

[tex]t \approx 6.329\,s[/tex]

The final position in comparison with the initial position of the girl is:

[tex]x_{girl} = 0\,m + \frac{1}{2}\cdot (0.13\,\frac{m}{s^{2}} )\cdot (6.329\,s)^{2}[/tex]

[tex]x_{girl} = 2.604\,m[/tex]