A mass weighing 3 lb stretches a spring 3 in. If the mass is pushed upward, contracting the spring a distance of 1 in and then set in motion with a downward velocity of 2 ft/s, and if there is no damping, find the positionu of the mass at any timet. Determine the frequency, period, amplitude, and phase of the motion.

Respuesta :

Answer:

Step-by-step explanation:

[tex]m=\frac{3}{32}\\ \gamma =0\text{ damping constant.}\\ k=\frac{3}{\frac{1}{4}}=12\\ F(t)=0\\ \text{so equation of motion is }\\ mu''+\gamma u'+ku=F(t)\\ \frac{3u''}{32}+12u=0\\ u''+128u=0\\ \text{and initial conditions are}\\ u(0)=-\frac{1}{12}\\ u'(0)=2\\ u''+128u=0\\ \text{characterstic equation is}\\ r^2+128=0\\ \text{roots are }\\ r=\pm 8\sqrt{2}i\\ \text{therefore general solution is}\\ u(t)=A\cos8\sqrt{2}t+Bsin8\sqrt{2}t\\ \text{using initial conditions we get}\\ A=-\frac{1}{12}\\ B=\frac{\sqrt{2}}{8}\\ \text{therefore solution is }\\ u(t)=-\frac{1}{12}\cos8\sqrt{2}t+\frac{\sqrt{2}}{8}\sin8\sqrt{2}t\\ {hence}\\R=\sqrt{\frac{11}{288}}\\\\\sigma=\pi - \tan^{-1}\frac{1}{\sqrt{2}}\\\\\omega_0=8\sqrt{2}\\T=\frac{4}{4\sqrt{2}}[/tex]