Respuesta :

m∠3 = 142°

Solution:

Line l and m are parallel.

Sum of the adjacent angles in a straight line is 180°.

⇒ 38° + m∠1 = 180°

⇒ m∠1 = 180° – 38°

m∠1 = 142°

∠1 and ∠3 are corresponding angles.

If two parallel lines are cut by a transversal, then the corresponding angles on the same side are congruent.

⇒ ∠1 ≅ ∠3

⇒ m∠1 = m∠3

⇒ m∠3 = 142°

Therefore m∠3 = 142°.

The value of ∠3 is 142 degree.

Given that, Lines L and M are parallel.

So that,   [tex]\angle 6=38[/tex]           (Vertically opposite angles are equal)

The Sum of internal angles on one side of transversal is equal to 180 degree  

       [tex]\angle5+\angle6=180[/tex]      

      [tex]\angle5+38=180\\\\\angle5=180-38=142[/tex]

Since, angle 3 and 5  are vertically opposite angles.

So that,  [tex]\angle3=\angle5=142[/tex]

Learn more:

https://brainly.com/question/68367