Assume X is normally distributed with a mean of 12 and a standard deviation of 2.
Determine the value for x that solves each of the following. Round the answers to 2 decimal places.
(a) P(X > x) = 0.5
(b) P(X > x) = 0.95
(c) P(x < X < 12) = 0.2
(d) P( -x < X - 12 < x) = 0.95
(e) P( -x < X - 12 < x) = 0.99

Respuesta :

Answer:

a) x=12

b) x=8.71

c) x=10.95

d) x=3.92

e) x=5.152

Step-by-step explanation:

a) x=12.

To have a probability of 0.5, x must be the mean of X.

b) x=8.71

[tex]z=-1.6449\\\\x=\mu+z\sigma=12-1.6449*2=8.71[/tex]

c) x=10.95

[tex]P(X<12)=0.5\\\\P(X<x)=0.5-P(X<12)=0.5-0.2=0.3\\\\z=-0.5244\\\\x=12-0.5244*2=10.95[/tex]

d) x=3.92

If we define Y=X-12, then

[tex]\mu_Y=\mu_X-12\\\\\sigma_Y=\sigma_X[/tex]

For z=1.96, the probability around the mean is 0.95. Then:

[tex]x=(12-12)+1.96*2=0+3.92=3.92[/tex]

e) x=5.152

As in the question d, the area around the mean now is 0.99. This happens when z=2.576. Then:

[tex]x=(12-12)+2.576*2=0+5.152=5.152[/tex]