contestada

Let A be an event, and let IA be the associated indicator random variable ( IA is 1 if A occurs, and zero if A does not occur). Similarly, let IT be the indicator of another event, B . Suppose that P(A)=p , P(B)=q , and P(A∩B)=r . Find the variance of IA−IB , in terms of p , q , r . Var(IA−IB)=

Respuesta :

Answer:

Step-by-step explanation:

Given that:

Let us consider an event is A and let the associated indicator random variable is IA

In same way, an event is B and the associated indicator random variable is IB.

Suppose that P(A) = P

P(B) = q, P(AnB) = r

Now, we find the variance of IA - IB in terms of p,q,r

Var(IA - IB) = var(IA) + var(IB) - 2cov(IA, IB)

Here, we find var(IA)

[tex]var(IA) = E(IA)^2 - [E(IA)]^2\\=I^2\dot P(A) + 0^2(I-P(A))-[1P(A)+0(I-P(A))]^2\\=P(A)+0-[P(A)+0]^2\\=P(A)-[P(A)]^2\\=P(A)[1-P(A)][/tex]

From the given data we have [tex]P(A)=P[/tex]

[tex]P[1-P]\\\therefore\, var(IA)=P[1-P]...(1)[/tex]

similarly [tex]var(IB)=q(1-q)....(2)[/tex]

[tex]cov(IA,\, IB)=E(IA\dot IB)-E(IA)E(IB)\\=1\times P(AnB)+[0times P(AnB)^c]-P\times q[/tex]

Frome the given data we have

[tex]P(AnB)=r\\1\times r +(0)-P\dot q\\=r-Pq[/tex]

[tex]cov(IA,\, IB)=r-Pq...(3)[/tex]

from 1,2,3 we have the variance of IA - IB is

[tex]var(IA-IB)=P(1-P)+q(1-q)-2(r-Pq)[/tex]