Solution:
The given formula,
[tex]x=F_{R} U_{L} \times \frac{P l}{F R_{1}} \times\left(T_{r e f}-\bar{T}_{a}\right) \Delta t \times \frac{A_{c}}{L}[/tex]
[tex]y=F_{R}(\tau \alpha)_{n} x \frac{F_{R}^{\prime}}{F_{R}} \times \frac{(\bar{\tau} d)}{(T d)_{n}} \times \bar{H}_{T} N \times \frac{A C}{L}[/tex]
[tex]\frac{x}{y}=\frac{ u_{L} \times\left(T_{x t}-\bar{T}_{a}\right) \times \Delta t}{\left(\tau_{x}\right)_{h} \times\left(\frac{\bar{\tau}_{d}}{\left.| \tau_{d}\right)_{n}}\right) \times \bar{H}+N}[/tex]
From the table,
[tex]1) \(\quad x=2 \cdot 87, \quad y=0.96\)\\\(\frac{x}{y}=\frac{2187}{0.96}\)22895\\\\2) \(x=3 \cdot 466 \cdot y=6 \cdot 998\)\\\(\frac{x}{y}=\frac{3 \cdot 466}{0.898}\)\(=3 \cdot 4729\)[/tex]
[tex]3\(x=3 \cdot 229, y=1 \cdot 08\)\\\(\frac{x}{x}=\frac{3 \cdot 229}{1 \cdot 08}\)\\=2.9898\)\\\\4) \(x=6.525, y=1.094\)\\\(\frac{x}{y}=\frac{5.625}{1.094}\)\\=5.0502[/tex]