Answer:
0.531 (3 s.f.)
Step-by-step explanation:
[tex]{5}^{3t} = 13 \\ lg {5}^{3t} = lg13 \: \: \: \: (log \: both \: sides) \\ 3t(lg5) = lg13 \\ 3t = \frac{lg13}{lg5} \\ t = \frac{1}{3} ( \frac{lg13}{lg5} ) \\ t = \frac{lg13}{3lg5} \\ t = 0.531 \: (3 \: s.f.)[/tex]
Power rule is used for the 3rd step.