Answer: [tex]V = \frac{1 \times a \ + \ 2 \times b}{3}[/tex] m/s
If second object is at rest i.e. b = 0 m/s then final velocity after collision will be [tex]V = \frac{1 \times a \ + \ 0}{3}[/tex] m/s
Explanation: Let us consider the velocity of 1 Kg box = a m/s
and that of 2 Kg box = b m/s
[tex]momentum = mass \times velocity \\[/tex]
So the linear momentum of 1 kg box will be = 1 [tex]\times[/tex] a
Linear momentum of 2 Kg box = 2 [tex]\times[/tex] b
Finally after collision both the masses stick together and move with a common velocity V m/s
So, applying the conservation of linear momentum
1 [tex]\times[/tex] a + 2 [tex]\times[/tex] b = (1 + 2) [tex]\times[/tex] V
[tex]V = \frac{1 \times a \ + \ 2 \times b}{3}[/tex] m/s
If second object is at rest i.e. b = 0 m/s then final velocity after collision will be
[tex]V = \frac{1 \times a \ + \ 0}{3}[/tex] m/s