Answer:
The team washed 27 cats and 41 dogs.
Step-by-step explanation:
Given:
Total number of animals washed = 68
Total money earned = (487+85) = 572$
Charged for each cat = 6$
Charged for each dog = 10$
Let the number of cats be 'x' and number of dogs be 'y'.
According to the question:
[tex]x+y =68[/tex] ...equation (i)
[tex]6x+10y=572[/tex] ...equation (ii)
Let arrange the first equation.
[tex]x=68-y[/tex] ...equation (iii)
Plugging the value of x from (iii) to (i).
We have,
⇒ [tex]6(68-y)+10y=572[/tex]
⇒ [tex]408-6y+10y=572[/tex]
⇒ [tex]408+4y=572[/tex]
⇒ [tex]4y=572-408[/tex]
⇒ [tex]4y=164[/tex]
⇒ [tex]y=\frac{164}{4}[/tex]
⇒ [tex]y=41[/tex]
Plugging the value of y=41 in equation (iii) we have .
⇒ [tex]x=68-41=27[/tex]
So the number of dogs washed = 41 and the number of cats washed = 27
by the girls soccer team for the fundraising.