Respuesta :
Answer:
Even though each of 2000 ohms resistor has twice the uncertainty of a 500 ohms resistor, the parallel circuit has half the uncertainty of the series circuit
Thus, the PARALLEL CIRCUIT would be more accurate
Explanation:
Check attachment for solution


Considering the [tex](500 \pm 50 \Omega)[/tex]impedance combination. Connection between series.
Considering the first pairing.
[tex]\to R_1 = 500+ 50= 550 \Omega \\\\ \to R_2= 550 \Omega\\\\[/tex]
Determine the corresponding resistance.
[tex]\to R_{eq} = R_1 +R_2 = 550 + 550 =1100 \Omega\\\\[/tex]
This uncertainty is [tex](1000+10\%)[/tex] in this case. Find the second pairing.
[tex]\to R_1 = 500 - 50 = 450 \ \Omega\\\\ \to R_2 = 500 - 50 = 450 \ \Omega\\\\[/tex]
Determine the corresponding resistance.
[tex]\to R_{eq}=R_1+R_2= 450 +450 = 900 \ \Omega\\\\[/tex]
Its ambiguity is [tex](1000 - 10\%)[/tex] in this case. The total uncertainty form [tex]1000 \ \Omega[/tex] of the resistors[tex](500 \pm 50 \Omega)[/tex] is [tex](1000\pm 10\%)[/tex].
A parallel connection of resistances is not considered in this case since it introduces a significant uncertainty in the needed resistance values.
Considering a combination of [tex](2000 \pm 5\% \Omega)[/tex] resistances. Connecting in parallel. Take the first pairing.
[tex]\to R_1 = 2000+ 5\% = 2000+100= 2100 \ \Omega\\\\\to R_2 = 2000+ 5\% = 2000+100= 2100 \ \Omega\\\\[/tex]
Determine the corresponding resistance.
[tex]\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2} =\frac{1}{2100}+\frac{1}{2100}= \frac{1+1}{2100}=\frac{2}{2100}\\\\\frac{1}{R_{eq}}=\frac{2}{2100}\\\\R_{eq}=\frac{2100}{2}= 1050 \ \Omega\\\\[/tex]
Its uncertainty in this case is [tex](1000 \ \Omega + 5\%)[/tex]. Find the second pairing.
[tex]\to R_1 = 2000- 5\% = 2000-100= 1900 \ \Omega\\\\\to R_2 = 2000- 5\% = 2000-100= 1900 \ \Omega\\\\[/tex]
Determine the corresponding resistance.
[tex]\frac{1}{R_{eq}}=\frac{1}{R_1}+\frac{1}{R_2} =\frac{1}{1900}+\frac{1}{1900}= \frac{1+1}{1900}=\frac{2}{1900}\\\\\frac{1}{R_{eq}}=\frac{2}{1900}\\\\R_{eq}=\frac{1900}{2}= 950 \ \Omega\\\\[/tex]
The uncertainty is present here [tex](1000 \Omega -5\%)[/tex]. Its overall variance form [tex]1000 \ \Omega[/tex] of the resistors [tex](2000 \Omega + 5\%)[/tex] is [tex](1000 \ \Omega + 5\%)[/tex].
This parallel connection of resistance values is not addressed here since it introduces a significant uncertainty in the needed resistance values.
As just a result, the lowest uncertainty is now in the parallel combination of the resistances [tex](2000 \Omega + 5\%)[/tex].
Learn more about the resistance:
brainly.com/question/22968238
