Sea water with a density of 1025 kg/m3 flows steadily through a pump at 0.21 m3 /s. The pump inlet is 0.25 m in diameter. At the inlet the pressure is 81326 N/m2 . The pump outlet is 0.152 m in diameter and is 1.8 meters above the inlet. The outlet pressure is 175 kPa. If the inlet and exit temperatures are equal, how much power does the pump add to the fluid

Respuesta :

Answer:

[tex]\dot W_{pump} = 16264.922\,W\,(16.265\,kW)[/tex]

Explanation:

The pump is modelled after applying Principle of Energy Conservation, whose form is:

[tex]\frac{P_{1}}{\rho\cdot g}+ \frac{v_{1}^{2}}{2\cdot g} +z_{1} + h_{pump}=\frac{P_{2}}{\rho\cdot g}+ \frac{v_{2}^{2}}{2\cdot g} +z_{2}[/tex]

The head associated with the pump is cleared:

[tex]h_{pump} = \frac{P_{2}-P_{1}}{\rho\cdot g}+\frac{v_{2}^{2}-v_{1}^{2}}{2\cdot g}+(z_{2}-z_{1})[/tex]

Inlet and outlet velocities are found:

[tex]v_{1} = \frac{0.21\,\frac{m^{3}}{s} }{\frac{\pi}{4}\cdot (0.25\,m)^{2} }[/tex]

[tex]v_{1} \approx 4.278\,\frac{m}{s}[/tex]

[tex]v_{2} = \frac{0.21\,\frac{m^{3}}{s} }{\frac{\pi}{4}\cdot (0.152\,m)^{2} }[/tex]

[tex]v_{2} \approx 11.573\,\frac{m}{s}[/tex]

Now, the head associated with the pump is finally computed:

[tex]h_{pump} = \frac{175\,kPa-81.326\,kPa}{(1025\,\frac{kg}{m^{3}} )\cdot (9.807\,\frac{m}{s^{2}} )} +\frac{(11.573\,\frac{m}{s} )^{2}-(4.278\,\frac{m}{s} )^{2}}{2\cdot (9.807\,\frac{m}{s^{2}} )} + 1.8\,m[/tex]

[tex]h_{pump} = 7.705\,m[/tex]

The power that pump adds to the fluid is:

[tex]\dot W_{pump} = \dot V \cdot \rho \cdot g \cdot h_{pump}[/tex]

[tex]\dot W_{pump} = (0.21\,m^{3})\cdot (1025\,\frac{kg}{m^{3}})\cdot (9.807\,\frac{m}{s^{2}})\cdot(7.705\,m)[/tex]

[tex]\dot W_{pump} = 16264.922\,W\,(16.265\,kW)[/tex]