Respuesta :
Answer:
Option D) 3 is correct
Therefore the value of x is 3
Step-by-step explanation:
Given equation is [tex]5+20\times (2)^{2-3x}=10\times (2)^{-2x}+5[/tex]
To find the value of x :
First solving the given equation we have,
[tex]5+20\times (2)^{2-3x}=10\times (2)^{-2x}+5[/tex]
[tex]5+20\times (2)^{2-3x}-5=10\times (2)^{-2x}+5-5[/tex]
[tex]20\times (2)^{2-3x}=10\times (2)^{-2x}[/tex]
[tex]20\times (2)^2.(2)^{-3x}=10\times (2)^{-2x}[/tex]
[tex]20\times 4.(2)^{-3x}=10\times (2)^{-2x}[/tex]
[tex]80(2)^{-3x}=10\times (2)^{-2x}[/tex]
[tex]\frac{80}{10}(2)^{-3x}=\frac{10\times (2)^{-2x}}{10}[/tex]
[tex]8(2)^{-3x}=(2)^{-2x}[/tex]
[tex]\frac{(2)^{-3x}}{(2)^{-2x}}=\frac{1}{8}[/tex]
[tex](2)^{-3x}.(2)^{2x}=\frac{1}{2^3}[/tex] ( by using the property [tex]\frac{1}{a^{-m}}=a^m[/tex] )
[tex]2^{-3x+2x}=\frac{1}{2^3}[/tex] ( by using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]2^{-x}=\frac{1}{2^3}[/tex]
[tex]\frac{1}{2^x}=\frac{1}{2^3}[/tex] ( by using the property [tex]a^{-m}=\frac{1}{a^m}[/tex] )
Since bases are same so powers are same
Therefore we can equate the powers we get x=3