Respuesta :
Answer:
[tex]x=\frac{\pi}{6}[/tex]
Step-by-step explanation:
Choices aren't given, so i will solve this equation and find the first positive x-intercept angle.
First, x-intercept means the x-cutting point of the graph. This occurs when y = 0. So we will solve the equation for x. Shown below:
[tex]y=Cot(3x)\\Cot(3x)=0\\ArcCot(Cot(3x))=ArcCot(0)\\3x=ArcCot(0)[/tex]
Inverse Cotangent (ArcCot) of 0 is at [tex]\frac{\pi}{2}[/tex], so we can now solve for x:
[tex]3x=ArcCot(0)\\3x=\frac{\pi}{2}\\x=\frac{\pi}{6}[/tex]
So, the x-intercept is at x = pi/6